Cargando…
An effective modular approach for crowd counting in an image using convolutional neural networks
Abrupt and continuous nature of scale variation in a crowded scene is a challenging task to enhance crowd counting accuracy in an image. Existing crowd counting techniques generally used multi-column or single-column dilated convolution to tackle scale variation due to perspective distortion. Howeve...
Autores principales: | Ilyas, Naveed, Ahmad, Zaheer, Lee, Boreom, Kim, Kiseon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986811/ https://www.ncbi.nlm.nih.gov/pubmed/35388054 http://dx.doi.org/10.1038/s41598-022-09685-w |
Ejemplares similares
-
Author Correction: An effective modular approach for crowd counting in an image using convolutional neural networks
por: Ilyas, Naveed, et al.
Publicado: (2022) -
HADF-Crowd: A Hierarchical Attention-Based Dense Feature Extraction Network for Single-Image Crowd Counting
por: Ilyas, Naveed, et al.
Publicado: (2021) -
Convolutional-Neural Network-Based Image Crowd Counting: Review, Categorization, Analysis, and Performance Evaluation
por: Ilyas, Naveed, et al.
Publicado: (2019) -
Convolutional Neural Networks and Heuristic Methods for Crowd Counting: A Systematic Review
por: Hassen, Khouloud Ben Ali, et al.
Publicado: (2022) -
Adaptive Modular Convolutional Neural Network for Image Recognition
por: Wu, Wenbo, et al.
Publicado: (2022)