Cargando…

Fertilization, embryo culture, and clinical results using low lactate embryo culture medium for pre‐culture, insemination, and beyond

PURPOSE: We focused on the metabolism of oocytes in pre‐culture and insemination and compared these results between our existing fertilization medium, GEMS Fertilisation Medium (GEMS group) (Merck BioPharma) and Continuous Single Culture Medium—NX Complete (CSCM‐NXC group) (FUJIFILM Irvine Scientifi...

Descripción completa

Detalles Bibliográficos
Autor principal: Kobanawa, Masato
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986977/
https://www.ncbi.nlm.nih.gov/pubmed/35414763
http://dx.doi.org/10.1002/rmb2.12458
Descripción
Sumario:PURPOSE: We focused on the metabolism of oocytes in pre‐culture and insemination and compared these results between our existing fertilization medium, GEMS Fertilisation Medium (GEMS group) (Merck BioPharma) and Continuous Single Culture Medium—NX Complete (CSCM‐NXC group) (FUJIFILM Irvine Scientific). METHODS: Patients under 42 years of age were received controlled ovarian stimulation and oocytes were retrieved. Those were pre‐cultured and fertilized with either GEMS fertilization medium or CSCM‐NXC. After fertilization was confirmed, embryos were cultured using CSCM‐NXC in both groups. The embryos were cryopreserved at blastocyst stage (3BB or more, Gardner classification) and then transferred in HRT cycles. RESULTS: The fertilization rate of both groups was the same, but the 3PN rate was significantly lower in the CSCM‐NXC group. In terms of embryo culture results, the CSCM‐NXC group had a significantly higher rate of good quality blastocysts, high‐grade embryos, and embryos with a high degree of expansion. CONCLUSIONS: The use of CSCM‐NXC, a low lactate embryo culture medium, from pre‐culture and for insemination, increases the energy metabolic efficiency of oocytes and cumulus cells, making it possible to supply sufficient energy ATP for fertilization and early division, which is thought to promote good embryonic development.