Cargando…
A hybrid feature extraction scheme for efficient malonylation site prediction
Lysine malonylation is one of the most important post-translational modifications (PTMs). It affects the functionality of cells. Malonylation site prediction in proteins can unfold the mechanisms of cellular functionalities. Experimental methods are one of the due prediction approaches. But they are...
Autores principales: | Sorkhi, Ali Ghanbari, Pirgazi, Jamshid, Ghasemi, Vahid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8987080/ https://www.ncbi.nlm.nih.gov/pubmed/35388017 http://dx.doi.org/10.1038/s41598-022-08555-9 |
Ejemplares similares
-
Improving prediction of drug-target interactions based on fusing multiple features with data balancing and feature selection techniques
por: Khojasteh, Hakimeh, et al.
Publicado: (2023) -
Drug–target interaction prediction using unifying of graph regularized nuclear norm with bilinear factorization
por: Sorkhi, Ali Ghanbari, et al.
Publicado: (2021) -
Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration: Malonylation site prediction
por: Liu, Xin, et al.
Publicado: (2020) -
Incorporating hybrid models into lysine malonylation sites prediction on mammalian and plant proteins
por: Chung, Chia-Ru, et al.
Publicado: (2020) -
Drug–target interaction prediction based on protein features, using wrapper feature selection
por: Abbasi Mesrabadi, Hengame, et al.
Publicado: (2023)