Cargando…
A Multistage Heterogeneous Stacking Ensemble Model for Augmented Infant Cry Classification
Understanding the reason for an infant's cry is the most difficult thing for parents. There might be various reasons behind the baby's cry. It may be due to hunger, pain, sleep, or diaper-related problems. The key concept behind identifying the reason behind the infant's cry is mainly...
Autores principales: | Joshi, Vinayak Ravi, Srinivasan, Kathiravan, Vincent, P. M. Durai Raj, Rajinikanth, Venkatesan, Chang, Chuan-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8987163/ https://www.ncbi.nlm.nih.gov/pubmed/35400062 http://dx.doi.org/10.3389/fpubh.2022.819865 |
Ejemplares similares
-
Deep Learning Assisted Neonatal Cry Classification via Support Vector Machine Models
por: K, Ashwini, et al.
Publicado: (2021) -
An Efficient Classification of Neonates Cry Using Extreme Gradient Boosting-Assisted Grouped-Support-Vector Network
por: Chang, Chuan-Yu, et al.
Publicado: (2021) -
A framework to distinguish healthy/cancer renal CT images using the fused deep features
por: Rajinikanth, Venkatesan, et al.
Publicado: (2023) -
Brain Tumor Class Detection in Flair/T2 Modality MRI Slices Using Elephant-Herd Algorithm Optimized Features
por: Rajinikanth, Venkatesan, et al.
Publicado: (2023) -
A novel multistage ensemble approach for prediction and classification of diabetes
por: Simaiya, Sarita, et al.
Publicado: (2022)