Cargando…
Protocol for state-of-health prediction of lithium-ion batteries based on machine learning
Accurate estimates of State of Health (SoH) are critical for characterizing the aging of lithium-ion batteries. This protocol combines feature extraction and a representative machine learning algorithm (i.e., least-squares support vector machine) for SoH prediction of lithium-ion batteries. We detai...
Autores principales: | Shu, Xing, Shen, Shiquan, Shen, Jiangwei, Zhang, Yuanjian, Li, Guang, Chen, Zheng, Liu, YongGang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8987387/ https://www.ncbi.nlm.nih.gov/pubmed/35403003 http://dx.doi.org/10.1016/j.xpro.2022.101272 |
Ejemplares similares
-
State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives
por: Shu, Xing, et al.
Publicado: (2021) -
Data on Machine Learning regenerated Lithium-ion battery impedance
por: Temiz, Selcuk, et al.
Publicado: (2022) -
Lithium lanthanum titanate perovskite as an anode for lithium ion batteries
por: Zhang, Lu, et al.
Publicado: (2020) -
Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques
por: Hannan, M. A., et al.
Publicado: (2020) -
Lithium-ion batteries
por: Castillo, Lana, et al.
Publicado: (2018)