Cargando…

Inhibition of Notch activity suppresses hyperglycemia-augmented polarization of macrophages to the M1 phenotype and alleviates acute pancreatitis

Acute pancreatitis (AP) is an acute inflammatory disorder characterized by acinar cell death and inflammation. Multiple factors cause hyperglycemia after AP. Macrophage polarization is involved in tissue injury and repair, and is regulated by Notch signaling during certain inflammatory diseases. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Ning, Zhang, Xiaoyi, Zhang, Xuanzhe, Guan, Yongjun, He, Ruyuan, Xue, Enfu, Deng, Wenhong, Yu, Jia, Wang, Weixing, Shi, Qiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8987789/
https://www.ncbi.nlm.nih.gov/pubmed/35302580
http://dx.doi.org/10.1042/CS20211031
Descripción
Sumario:Acute pancreatitis (AP) is an acute inflammatory disorder characterized by acinar cell death and inflammation. Multiple factors cause hyperglycemia after AP. Macrophage polarization is involved in tissue injury and repair, and is regulated by Notch signaling during certain inflammatory diseases. The present study explores the relationship among hyperglycemia, macrophage polarization, and Notch signaling during AP and the related mechanisms. A cerulein-induced AP model was established in FVB/N mice, and AP with hyperglycemia was initiated by injection of 50% concentration glucose. Tissue damage, Notch activity, and macrophage polarization were assessed in pancreatic tissues. The role of Notch signaling in macrophage polarization during AP was also assessed in vitro by co-culturing primary macrophages and pancreatic acinar cells, and establishing a lipopolysaccharide (LPS)-induced inflammatory model in RAW264.7 cells. Pancreatic acinar cells were damaged and proinflammatory factor levels were increased in pancreatic tissues during AP. The hyperglycemic conditions aggravated pancreatic injury, increased macrophage infiltration, promoted macrophage polarization towards an M1 phenotype, and led to excessive up-regulation of Notch activity. Inhibition of Notch signaling by DAPT or Notch1 knockdown decreased the proportion of M1 macrophages and reduced the production of proinflammatory factors, thus mitigating pancreatic injury. These findings suggest that hyperglycemia induces excessive Notch signaling after AP and further aggravates AP by promoting pancreatic macrophage polarization towards the M1 phenotype. The Notch signaling pathway is a potential target for the prevention and treatment of AP.