Cargando…
Ridge Penalization in High-Dimensional Testing With Applications to Imaging Genetics
High-dimensionality is ubiquitous in various scientific fields such as imaging genetics, where a deluge of functional and structural data on brain-relevant genetic polymorphisms are investigated. It is crucial to identify which genetic variations are consequential in identifying neurological feature...
Autores principales: | Gauran, Iris Ivy, Xue, Gui, Chen, Chuansheng, Ombao, Hernando, Yu, Zhaoxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8987922/ https://www.ncbi.nlm.nih.gov/pubmed/35401090 http://dx.doi.org/10.3389/fnins.2022.836100 |
Ejemplares similares
-
Hierarchical vector auto-regressive models and their applications to multi-subject effective connectivity
por: Gorrostieta, Cristina, et al.
Publicado: (2013) -
Bayesian variable selection using Knockoffs with applications to genomics
por: Yap, Jurel K., et al.
Publicado: (2022) -
Significance testing in ridge regression for genetic data
por: Cule, Erika, et al.
Publicado: (2011) -
Neuroprotection in late life attention-deficit/hyperactivity disorder: A review of pharmacotherapy and phenotype across the lifespan
por: Dutta, Cintya Nirvana, et al.
Publicado: (2022) -
Ridge regression and its applications in genetic studies
por: Arashi, M., et al.
Publicado: (2021)