Cargando…
A Question-and-Answer System to Extract Data From Free-Text Oncological Pathology Reports (CancerBERT Network): Development Study
BACKGROUND: Information in pathology reports is critical for cancer care. Natural language processing (NLP) systems used to extract information from pathology reports are often narrow in scope or require extensive tuning. Consequently, there is growing interest in automated deep learning approaches....
Autores principales: | Mitchell, Joseph Ross, Szepietowski, Phillip, Howard, Rachel, Reisman, Phillip, Jones, Jennie D, Lewis, Patricia, Fridley, Brooke L, Rollison, Dana E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8987958/ https://www.ncbi.nlm.nih.gov/pubmed/35319481 http://dx.doi.org/10.2196/27210 |
Ejemplares similares
-
Bert for Question Answering applied on Covid-19
por: Widad, Awane, et al.
Publicado: (2022) -
CancerBERT: a cancer domain-specific language model for extracting breast cancer phenotypes from electronic health records
por: Zhou, Sicheng, et al.
Publicado: (2022) -
Investigating Query Expansion and Coreference Resolution in Question Answering on BERT
por: Bhattacharjee, Santanu, et al.
Publicado: (2020) -
COBERT: COVID-19 Question Answering System Using BERT
por: Alzubi, Jafar A., et al.
Publicado: (2021) -
Hands-on Question Answering Systems with BERT: Applications in Neural Networks and Natural Language Processing
por: Sabharwal, Navin, et al.
Publicado: (2021)