Cargando…

Association Mapping of Lathyrus sativus Disease Response to Uromyces pisi Reveals Novel Loci Underlying Partial Resistance

Uromyces pisi ([Pers.] D.C.) Wint. is an important foliar biotrophic pathogen infecting grass pea (Lathyrus sativus L.), compromising their yield stability. To date, few efforts have been made to assess the natural variation in grass pea resistance and to identify the resistance loci operating again...

Descripción completa

Detalles Bibliográficos
Autores principales: Martins, Davide Coelho, Rubiales, Diego, Vaz Patto, Maria Carlota
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988034/
https://www.ncbi.nlm.nih.gov/pubmed/35401593
http://dx.doi.org/10.3389/fpls.2022.842545
_version_ 1784682873168592896
author Martins, Davide Coelho
Rubiales, Diego
Vaz Patto, Maria Carlota
author_facet Martins, Davide Coelho
Rubiales, Diego
Vaz Patto, Maria Carlota
author_sort Martins, Davide Coelho
collection PubMed
description Uromyces pisi ([Pers.] D.C.) Wint. is an important foliar biotrophic pathogen infecting grass pea (Lathyrus sativus L.), compromising their yield stability. To date, few efforts have been made to assess the natural variation in grass pea resistance and to identify the resistance loci operating against this pathogen, limiting its efficient breeding exploitation. To overcome this knowledge gap, the genetic architecture of grass pea resistance to U. pisi was investigated using a worldwide collection of 182 accessions through a genome-wide association approach. The response of the grass pea collection to rust infection under controlled conditions and at the seedling stage did not reveal any hypersensitive response but a continuous variation for disease severity, with the identification of promising sources of partial resistance. A panel of 5,651 high-quality single-nucleotide polymorphism (SNP) markers previously generated was used to test for SNP-trait associations, based on a mixed linear model accounting for population structure. We detected seven SNP markers significantly associated with U. pisi disease severity, suggesting that partial resistance is oligogenic. Six of the associated SNP markers were located in chromosomes 4 and 6, while the remaining SNP markers had no known chromosomal position. Through comparative mapping with the pea reference genome, a total of 19 candidate genes were proposed, encoding for leucine-rich repeat, NB-ARC domain, and TGA transcription factor family, among others. Results presented in this study provided information on the availability of partial resistance in grass pea germplasm and advanced our understanding of the molecular mechanisms of quantitative resistance to rust in grass pea. Moreover, the detected associated SNP markers constitute promising genomic targets for the development of molecular tools to assist disease resistance precision breeding.
format Online
Article
Text
id pubmed-8988034
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-89880342022-04-08 Association Mapping of Lathyrus sativus Disease Response to Uromyces pisi Reveals Novel Loci Underlying Partial Resistance Martins, Davide Coelho Rubiales, Diego Vaz Patto, Maria Carlota Front Plant Sci Plant Science Uromyces pisi ([Pers.] D.C.) Wint. is an important foliar biotrophic pathogen infecting grass pea (Lathyrus sativus L.), compromising their yield stability. To date, few efforts have been made to assess the natural variation in grass pea resistance and to identify the resistance loci operating against this pathogen, limiting its efficient breeding exploitation. To overcome this knowledge gap, the genetic architecture of grass pea resistance to U. pisi was investigated using a worldwide collection of 182 accessions through a genome-wide association approach. The response of the grass pea collection to rust infection under controlled conditions and at the seedling stage did not reveal any hypersensitive response but a continuous variation for disease severity, with the identification of promising sources of partial resistance. A panel of 5,651 high-quality single-nucleotide polymorphism (SNP) markers previously generated was used to test for SNP-trait associations, based on a mixed linear model accounting for population structure. We detected seven SNP markers significantly associated with U. pisi disease severity, suggesting that partial resistance is oligogenic. Six of the associated SNP markers were located in chromosomes 4 and 6, while the remaining SNP markers had no known chromosomal position. Through comparative mapping with the pea reference genome, a total of 19 candidate genes were proposed, encoding for leucine-rich repeat, NB-ARC domain, and TGA transcription factor family, among others. Results presented in this study provided information on the availability of partial resistance in grass pea germplasm and advanced our understanding of the molecular mechanisms of quantitative resistance to rust in grass pea. Moreover, the detected associated SNP markers constitute promising genomic targets for the development of molecular tools to assist disease resistance precision breeding. Frontiers Media S.A. 2022-03-24 /pmc/articles/PMC8988034/ /pubmed/35401593 http://dx.doi.org/10.3389/fpls.2022.842545 Text en Copyright © 2022 Martins, Rubiales and Vaz Patto. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Martins, Davide Coelho
Rubiales, Diego
Vaz Patto, Maria Carlota
Association Mapping of Lathyrus sativus Disease Response to Uromyces pisi Reveals Novel Loci Underlying Partial Resistance
title Association Mapping of Lathyrus sativus Disease Response to Uromyces pisi Reveals Novel Loci Underlying Partial Resistance
title_full Association Mapping of Lathyrus sativus Disease Response to Uromyces pisi Reveals Novel Loci Underlying Partial Resistance
title_fullStr Association Mapping of Lathyrus sativus Disease Response to Uromyces pisi Reveals Novel Loci Underlying Partial Resistance
title_full_unstemmed Association Mapping of Lathyrus sativus Disease Response to Uromyces pisi Reveals Novel Loci Underlying Partial Resistance
title_short Association Mapping of Lathyrus sativus Disease Response to Uromyces pisi Reveals Novel Loci Underlying Partial Resistance
title_sort association mapping of lathyrus sativus disease response to uromyces pisi reveals novel loci underlying partial resistance
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988034/
https://www.ncbi.nlm.nih.gov/pubmed/35401593
http://dx.doi.org/10.3389/fpls.2022.842545
work_keys_str_mv AT martinsdavidecoelho associationmappingoflathyrussativusdiseaseresponsetouromycespisirevealsnovellociunderlyingpartialresistance
AT rubialesdiego associationmappingoflathyrussativusdiseaseresponsetouromycespisirevealsnovellociunderlyingpartialresistance
AT vazpattomariacarlota associationmappingoflathyrussativusdiseaseresponsetouromycespisirevealsnovellociunderlyingpartialresistance