Cargando…
Identification of treatment‐induced vulnerabilities in pancreatic cancer patients using functional model systems
Despite the advance and success of precision oncology in gastrointestinal cancers, the frequency of molecular‐informed therapy decisions in pancreatic ductal adenocarcinoma (PDAC) is currently neglectable. We present a longitudinal precision oncology platform based on functional model systems, inclu...
Autores principales: | Peschke, Katja, Jakubowsky, Hannah, Schäfer, Arlett, Maurer, Carlo, Lange, Sebastian, Orben, Felix, Bernad, Raquel, Harder, Felix N, Eiber, Matthias, Öllinger, Rupert, Steiger, Katja, Schlitter, Melissa, Weichert, Wilko, Mayr, Ulrich, Phillip, Veit, Schlag, Christoph, Schmid, Roland M, Braren, Rickmer F, Kong, Bo, Demir, Ihsan Ekin, Friess, Helmut, Rad, Roland, Saur, Dieter, Schneider, Günter, Reichert, Maximilian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988213/ https://www.ncbi.nlm.nih.gov/pubmed/35119792 http://dx.doi.org/10.15252/emmm.202114876 |
Ejemplares similares
-
[(18)F]FDG PET/MRI enables early chemotherapy response prediction in pancreatic ductal adenocarcinoma
por: Harder, Felix N., et al.
Publicado: (2021) -
Multiparametric Modelling of Survival in Pancreatic Ductal Adenocarcinoma Using Clinical, Histomorphological, Genetic and Image-Derived Parameters
por: Kaissis, Georgios A., et al.
Publicado: (2020) -
Prediction of Tumor Cellularity in Resectable PDAC from Preoperative Computed Tomography Imaging
por: Jungmann, Friederike, et al.
Publicado: (2021) -
Correlation of in vivo imaging to morphomolecular pathology in translational research: challenge accepted
por: Ballke, Simone, et al.
Publicado: (2021) -
A machine learning algorithm predicts molecular subtypes in pancreatic ductal adenocarcinoma with differential response to gemcitabine-based versus FOLFIRINOX chemotherapy
por: Kaissis, Georgios, et al.
Publicado: (2019)