Cargando…
Real-Time Adaptation of an Artificial Neural Network for Transfemoral Amputees Using a Powered Prosthesis
OBJECTIVE: We evaluated a two-step method to improve control accuracy for a powered prosthetic leg using machine learning and adaptation, while reducing subject training time. METHODS: First, information from three transfemoral amputees was grouped together, to create a baseline control system that...
Autores principales: | Woodward, Richard B., Simon, Ann M., Seyforth, Emily A., Hargrove, Levi J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988236/ https://www.ncbi.nlm.nih.gov/pubmed/34652995 http://dx.doi.org/10.1109/TBME.2021.3120616 |
Ejemplares similares
-
Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis
por: Ingraham, Kimberly A., et al.
Publicado: (2016) -
Configuring a Powered Knee and Ankle Prosthesis for Transfemoral Amputees within Five Specific Ambulation Modes
por: Simon, Ann M., et al.
Publicado: (2014) -
Seamless and intuitive control of a powered prosthetic leg using deep neural network for transfemoral amputees
por: Kim, Minjae, et al.
Publicado: (2022) -
Non-weight-bearing neural control of a powered transfemoral prosthesis
por: Hargrove, Levi J, et al.
Publicado: (2013) -
Interactions Between Transfemoral Amputees and a Powered Knee Prosthesis During Load Carriage
por: Brandt, Andrea, et al.
Publicado: (2017)