Cargando…

Antibiotic Chlortetracycline Causes Transgenerational Immunosuppression via NF-κB

[Image: see text] The extensive and increasing global use of antibiotics results in the ubiquitous presence of antibiotics in the environment, which has made them “pseudo persistent organic contaminants.” Despite numerous studies showing wide adverse effects of antibiotics on organisms, the chronic...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Wenhui, Chen, Bei, Tang, Liang, Zheng, Chunmiao, Xu, Bentuo, Liu, Zhiyu, Magnuson, Jason T., Zhang, Shuwen, Schlenk, Daniel, Xu, Elvis Genbo, Xing, Baoshan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988297/
https://www.ncbi.nlm.nih.gov/pubmed/35286074
http://dx.doi.org/10.1021/acs.est.1c07343
Descripción
Sumario:[Image: see text] The extensive and increasing global use of antibiotics results in the ubiquitous presence of antibiotics in the environment, which has made them “pseudo persistent organic contaminants.” Despite numerous studies showing wide adverse effects of antibiotics on organisms, the chronic environmental risk of their exposure is unknown, and the molecular and cellular mechanisms of antibiotic toxicity remain unclear. Here, we systematically quantified transgenerational immune disturbances after chronic parental exposure to environmental levels of a common antibiotic, chlortetracycline (CTC), using zebrafish as a model. CTC strongly reduced the antibacterial activities of fish offspring by transgenerational immunosuppression. Both innate and adaptive immunities of the offspring were suppressed, showing significant perturbation of macrophages and neutrophils, expression of immune-related genes, and other immune functions. Moreover, these CTC-induced immune effects were either prevented or alleviated by the supplementation with PDTC, an antagonist of nuclear factor-κB (NF-κB), uncovering a seminal role of NF-κB in CTC immunotoxicity. Our results provide the evidence in fish that CTC at environmentally relevant concentrations can be transmitted over multiple generations and weaken the immune defense of offspring, raising concerns on the population hazards and ecological risk of antibiotics in the natural environment.