Cargando…
Generative Adversarial Training for Supervised and Semi-supervised Learning
Neural networks have played critical roles in many research fields. The recently proposed adversarial training (AT) can improve the generalization ability of neural networks by adding intentional perturbations in the training process, but sometimes still fail to generate worst-case perturbations, th...
Autores principales: | Wang, Xianmin, Li, Jing, Liu, Qi, Zhao, Wenpeng, Li, Zuoyong, Wang, Wenhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988301/ https://www.ncbi.nlm.nih.gov/pubmed/35401139 http://dx.doi.org/10.3389/fnbot.2022.859610 |
Ejemplares similares
-
Hardness Recognition of Robotic Forearm Based on Semi-supervised Generative Adversarial Networks
por: Qian, Xiaoliang, et al.
Publicado: (2019) -
Semi-supervised Learning Approach to Generate Neuroimaging Modalities with Adversarial Training
por: Nguyen, Harrison, et al.
Publicado: (2020) -
Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition
por: Gao, Fei, et al.
Publicado: (2018) -
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022) -
Quantum semi-supervised generative adversarial network for enhanced data classification
por: Nakaji, Kouhei, et al.
Publicado: (2021)