Cargando…
Influences of gestational diabetes mellitus on the oral microbiota in offspring from birth to 1 month old
BACKGROUND: Maternal gestational diabetes mellitus (GDM) had long-term influences on the health of their children. However, the influences of GDM on the oral microbiota, which was closely related to oral and systemic health in offspring, were less documented. The present study aimed to explore the o...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988340/ https://www.ncbi.nlm.nih.gov/pubmed/35387603 http://dx.doi.org/10.1186/s12884-022-04630-1 |
Sumario: | BACKGROUND: Maternal gestational diabetes mellitus (GDM) had long-term influences on the health of their children. However, the influences of GDM on the oral microbiota, which was closely related to oral and systemic health in offspring, were less documented. The present study aimed to explore the oral microbiota of neonates born to mothers with GDM is differentially colonized compared with those born to mothers without GDM, and whether any such differences persist to 1 month of age. METHODS: Oral samples were collected from children of mothers with (n = 20) and without GDM (n = 34) at birth and again at an average age of 1 month. The oral microbiota was characterized by 16S rRNA sequencing (V3-V4). Differences in diversity and composition according to maternal GDM status were assessed, and different metabolic functional pathways and microbial ecological networks were also analyzed. RESULTS: Although no significant differences were observed in diversity metrics between GDM and non-GDM groups (P > 0.05), we found significant differences in the taxonomic composition of oral microbiota from phylum to genus level between the two groups, with the GDM group exhibiting less abundance of Veillonella in both “Day 1” (P < 0.001) and “Day 30” (P < 0.05) phases. Metabolic pathways analysis showed that 5-aminoimidazole ribonucleotide biosynthesis and inosine-5'-phosphate biosynthesis were enriched in GDM subjects in the “Day 30” phase. Moreover, ecological network analysis revealed apparent differences between GDM and control groups, with the non-GDM group containing more high-degree nodes and microbial interactions compared with the GDM group. CONCLUSION: Maternal GDM was associated with an altered oral microbial composition in neonates, although the distinct difference between GDM and non-GDM groups diminished in infancy. The oral microbiota functions and ecological networks differed dramatically between the two groups, highlighting the importance of maternal GDM status on initial oral microbiota in offspring. |
---|