Cargando…
Upcycling of semicrystalline polymers by compatibilization: mechanism and location of compatibilizers
With the continuous increase of global plastics production, there is a demand to develop energy efficient processes to transform mixed plastic wastes into new products with enhanced utility – a concept that is often referred to as upcycling. Compatibilization is one of the most promising strategies...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988659/ https://www.ncbi.nlm.nih.gov/pubmed/35425049 http://dx.doi.org/10.1039/d1ra09452a |
Sumario: | With the continuous increase of global plastics production, there is a demand to develop energy efficient processes to transform mixed plastic wastes into new products with enhanced utility – a concept that is often referred to as upcycling. Compatibilization is one of the most promising strategies to upcycle communal waste plastics. In this work, poly(ethylene terephthalate) (PET) and high-density polyethylene (HDPE), both widely used semicrystalline packaging polymers, are used as the target polymer blend. We systematically evaluate and compare three commercial ethylene copolymer based compatibilizers, ELVALOY™ AC 2016 Acrylate Copolymer (EAA), ELVALOY™ PTW Copolymer (PTW), and SURLYN™ 1802 Ionomer (Surlyn). They represent different compatibilization mechanisms. Furthermore, this work tackles a challenging question: where the compatibilizers are located in the blend. We discover that the location of the compatibilizer molecules can be predicted by comparing the crystallinity change of PET and HDPE in binary and ternary systems. Gaining this knowledge will facilitate root cause analysis of an ineffective compatibilizer and guide the design strategy to upcycle commingled waste plastics. |
---|