Cargando…
Machine-learning of complex evolutionary signals improves classification of SNVs
Conservation is a strong predictor for the pathogenicity of single-nucleotide variants (SNVs). However, some positions that present complex conservation patterns across vertebrates stray from this paradigm. Here, we analyzed the association between complex conservation patterns and the pathogenicity...
Autores principales: | Labes, Sapir, Stupp, Doron, Wagner, Naama, Bloch, Idit, Lotem, Michal, L. Lahad, Ephrat, Polak, Paz, Pupko, Tal, Tabach, Yuval |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988715/ https://www.ncbi.nlm.nih.gov/pubmed/35402908 http://dx.doi.org/10.1093/nargab/lqac025 |
Ejemplares similares
-
Co-evolution based machine-learning for predicting functional interactions between human genes
por: Stupp, Doron, et al.
Publicado: (2021) -
PRINCESS: comprehensive detection of haplotype resolved SNVs, SVs, and methylation
por: Mahmoud, Medhat, et al.
Publicado: (2021) -
CladeOScope: functional interactions through the prism of clade-wise co-evolution
por: Tsaban, Tomer, et al.
Publicado: (2021) -
Mapping global and local coevolution across 600 species to identify novel homologous recombination repair genes
por: Sherill-Rofe, Dana, et al.
Publicado: (2019) -
MetaRNN: differentiating rare pathogenic and rare benign missense SNVs and InDels using deep learning
por: Li, Chang, et al.
Publicado: (2022)