Cargando…
Combining biomedical knowledge graphs and text to improve predictions for drug-target interactions and drug-indications
Biomedical knowledge is represented in structured databases and published in biomedical literature, and different computational approaches have been developed to exploit each type of information in predictive models. However, the information in structured databases and literature is often complement...
Autores principales: | Alshahrani, Mona, Almansour, Abdullah, Alkhaldi, Asma, Thafar, Maha A., Uludag, Mahmut, Essack, Magbubah, Hoehndorf, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988936/ https://www.ncbi.nlm.nih.gov/pubmed/35402106 http://dx.doi.org/10.7717/peerj.13061 |
Ejemplares similares
-
Application and evaluation of knowledge graph embeddings in biomedical data
por: Alshahrani, Mona, et al.
Publicado: (2021) -
Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning
por: Thafar, Maha A., et al.
Publicado: (2022) -
OncoRTT: Predicting novel oncology-related therapeutic targets using BERT embeddings and omics features
por: Thafar, Maha A., et al.
Publicado: (2023) -
DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques
por: Thafar, Maha A., et al.
Publicado: (2020) -
Predicting Bone Metastasis Using Gene Expression-Based Machine Learning Models
por: Albaradei, Somayah, et al.
Publicado: (2021)