Cargando…
Modeling time evolving COVID-19 uncertainties with density dependent asymptomatic infections and social reinforcement
The COVID-19 pandemic has posed significant challenges in modeling its complex epidemic transmissions, infection and contagion, which are very different from known epidemics. The challenges in quantifying COVID-19 complexities include effectively modeling its process and data uncertainties. The unce...
Autores principales: | Liu, Qing, Cao, Longbing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989129/ https://www.ncbi.nlm.nih.gov/pubmed/35393500 http://dx.doi.org/10.1038/s41598-022-09879-2 |
Ejemplares similares
-
Tweeting in the Time of Coronavirus: How Social Media Use and Academic Research Evolve during Times of Global Uncertainty
por: Kligler-Vilenchik, Neta, et al.
Publicado: (2020) -
Estimating uncertainty in density surface models
por: Miller, David L., et al.
Publicado: (2022) -
Reinforcement Learning with Side Information for the Uncertainties
por: Yang, Janghoon
Publicado: (2022) -
Safe Model-Based Reinforcement Learning for Systems With Parametric Uncertainties
por: Mahmud, S. M. Nahid, et al.
Publicado: (2021) -
Modelling and Predictive Monitoring of Business Processes under Uncertainty with Reinforcement Learning
por: Bousdekis, Alexandros, et al.
Publicado: (2023)