Cargando…
Improving the quality of predictive models in small data GSDOT: A new algorithm for generating synthetic data
In the age of the data deluge there are still many domains and applications restricted to the use of small datasets. The ability to harness these small datasets to solve problems through the use of supervised learning methods can have a significant impact in many important areas. The insufficient si...
Autores principales: | Douzas, Georgios, Lechleitner, Maria, Bacao, Fernando |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989239/ https://www.ncbi.nlm.nih.gov/pubmed/35390030 http://dx.doi.org/10.1371/journal.pone.0265626 |
Ejemplares similares
-
New Approach for Generating Synthetic Medical Data to Predict Type 2 Diabetes
por: Tagmatova, Zarnigor, et al.
Publicado: (2023) -
Machine Learning Methods and Synthetic Data Generation to Predict Large Wildfires
por: Pérez-Porras, Fernando-Juan, et al.
Publicado: (2021) -
Practical Synthetic Data Generation
por: Emam, Khaled
Publicado: (2020) -
dsSynthetic: synthetic data generation for the DataSHIELD federated analysis system
por: Banerjee, Soumya, et al.
Publicado: (2022) -
Object Positioning Algorithm Based on Multidimensional Scaling and Optimization for Synthetic Gesture Data Generation
por: Saez-Mingorance, Borja, et al.
Publicado: (2021)