Cargando…

Multivariate functional group sparse regression: Functional predictor selection

In this paper, we propose methods for functional predictor selection and the estimation of smooth functional coefficients simultaneously in a scalar-on-function regression problem under a high-dimensional multivariate functional data setting. In particular, we develop two methods for functional grou...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahzarnia, Ali, Song, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989243/
https://www.ncbi.nlm.nih.gov/pubmed/35390009
http://dx.doi.org/10.1371/journal.pone.0265940
_version_ 1784683126537060352
author Mahzarnia, Ali
Song, Jun
author_facet Mahzarnia, Ali
Song, Jun
author_sort Mahzarnia, Ali
collection PubMed
description In this paper, we propose methods for functional predictor selection and the estimation of smooth functional coefficients simultaneously in a scalar-on-function regression problem under a high-dimensional multivariate functional data setting. In particular, we develop two methods for functional group-sparse regression under a generic Hilbert space of infinite dimension. We show the convergence of algorithms and the consistency of the estimation and the selection (oracle property) under infinite-dimensional Hilbert spaces. Simulation studies show the effectiveness of the methods in both the selection and the estimation of functional coefficients. The applications to functional magnetic resonance imaging (fMRI) reveal the regions of the human brain related to ADHD and IQ.
format Online
Article
Text
id pubmed-8989243
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-89892432022-04-08 Multivariate functional group sparse regression: Functional predictor selection Mahzarnia, Ali Song, Jun PLoS One Research Article In this paper, we propose methods for functional predictor selection and the estimation of smooth functional coefficients simultaneously in a scalar-on-function regression problem under a high-dimensional multivariate functional data setting. In particular, we develop two methods for functional group-sparse regression under a generic Hilbert space of infinite dimension. We show the convergence of algorithms and the consistency of the estimation and the selection (oracle property) under infinite-dimensional Hilbert spaces. Simulation studies show the effectiveness of the methods in both the selection and the estimation of functional coefficients. The applications to functional magnetic resonance imaging (fMRI) reveal the regions of the human brain related to ADHD and IQ. Public Library of Science 2022-04-07 /pmc/articles/PMC8989243/ /pubmed/35390009 http://dx.doi.org/10.1371/journal.pone.0265940 Text en © 2022 Mahzarnia, Song https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Mahzarnia, Ali
Song, Jun
Multivariate functional group sparse regression: Functional predictor selection
title Multivariate functional group sparse regression: Functional predictor selection
title_full Multivariate functional group sparse regression: Functional predictor selection
title_fullStr Multivariate functional group sparse regression: Functional predictor selection
title_full_unstemmed Multivariate functional group sparse regression: Functional predictor selection
title_short Multivariate functional group sparse regression: Functional predictor selection
title_sort multivariate functional group sparse regression: functional predictor selection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989243/
https://www.ncbi.nlm.nih.gov/pubmed/35390009
http://dx.doi.org/10.1371/journal.pone.0265940
work_keys_str_mv AT mahzarniaali multivariatefunctionalgroupsparseregressionfunctionalpredictorselection
AT songjun multivariatefunctionalgroupsparseregressionfunctionalpredictorselection