Cargando…
Optimized deformable convolution network for detection and mitigation of ocular artifacts from EEG signal
Electroencephalogram (EEG) is the key component in the field of analyzing brain activity and behavior. EEG signals are affected by artifacts in the recorded electrical activity; thereby it affects the analysis of EGG. To extract the clean data from EEG signals and to improve the efficiency of detect...
Autores principales: | Prasad, Devulapalli Shyam, Chanamallu, Srinivasa Rao, Prasad, Kodati Satya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989407/ https://www.ncbi.nlm.nih.gov/pubmed/35431612 http://dx.doi.org/10.1007/s11042-022-12874-4 |
Ejemplares similares
-
Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
por: Nejedly, Petr, et al.
Publicado: (2018) -
Recognition of Ocular Artifacts in EEG Signal through a Hybrid Optimized Scheme
por: Sahoo, Santosh Kumar, et al.
Publicado: (2022) -
Ear-EEG sensitivity modeling for neural sources and ocular artifacts
por: Yarici, Metin C., et al.
Publicado: (2023) -
Quantifying Signal Quality From Unimodal and Multimodal Sources: Application to EEG With Ocular and Motion Artifacts
por: Nahmias, David O., et al.
Publicado: (2021) -
Physiological artifacts in scalp EEG and ear-EEG
por: Kappel, Simon L., et al.
Publicado: (2017)