Cargando…
Unsupervised Bayesian Ising Approximation for decoding neural activity and other biological dictionaries
The problem of deciphering how low-level patterns (action potentials in the brain, amino acids in a protein, etc.) drive high-level biological features (sensorimotor behavior, enzymatic function) represents the central challenge of quantitative biology. The lack of general methods for doing so from...
Autores principales: | Hernández, Damián G, Sober, Samuel J, Nemenman, Ilya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989415/ https://www.ncbi.nlm.nih.gov/pubmed/35315769 http://dx.doi.org/10.7554/eLife.68192 |
Ejemplares similares
-
Missing mass approximations for the partition function of stimulus driven Ising models
por: Haslinger, Robert, et al.
Publicado: (2013) -
Unsupervised Adaptation of Brain-Machine Interface Decoders
por: Gürel, Tayfun, et al.
Publicado: (2012) -
Unsupervised learning of facial emotion decoding skills
por: Huelle, Jan O., et al.
Publicado: (2014) -
Unsupervised Decoding of Long-Term, Naturalistic Human Neural Recordings with Automated Video and Audio Annotations
por: Wang, Nancy X. R., et al.
Publicado: (2016) -
Bayesian Population Decoding of Spiking Neurons
por: Gerwinn, Sebastian, et al.
Publicado: (2009)