Cargando…
A robust and interpretable machine learning approach using multimodal biological data to predict future pathological tau accumulation
The early stages of Alzheimer’s disease (AD) involve interactions between multiple pathophysiological processes. Although these processes are well studied, we still lack robust tools to predict individualised trajectories of disease progression. Here, we employ a robust and interpretable machine lea...
Autores principales: | Giorgio, Joseph, Jagust, William J., Baker, Suzanne, Landau, Susan M., Tino, Peter, Kourtzi, Zoe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989879/ https://www.ncbi.nlm.nih.gov/pubmed/35393421 http://dx.doi.org/10.1038/s41467-022-28795-7 |
Ejemplares similares
-
Modelling prognostic trajectories of cognitive decline due to Alzheimer's disease
por: Giorgio, Joseph, et al.
Publicado: (2020) -
A robust harmonization approach for cognitive data from multiple aging and dementia cohorts
por: Giorgio, Joseph, et al.
Publicado: (2023) -
Evaluation of a visual interpretation method for tau‐PET with (18)F‐flortaucipir
por: Sonni, Ida, et al.
Publicado: (2020) -
Global brain activity and its coupling with cerebrospinal fluid flow is related to tau pathology
por: Han, Feng, et al.
Publicado: (2023) -
Biomarkers for tau pathology
por: Schöll, Michael, et al.
Publicado: (2019)