Cargando…

Negative feedback of SNRK to circ-SNRK regulates cardiac function post-myocardial infarction

A limited delivery of oxygen and metabolic substrate to the heart caused by myocardial infarction (MI) impairs the cardiac function, and often results in heart failure. Here, we identified a circRNA (circ-SNRK) from SNRK (sucrose nonfermenting 1-related kinase, which can increase the cardiac mitocho...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhi-Yan, Liu, Xiao-Xiao, Deng, Yun-Fei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989981/
https://www.ncbi.nlm.nih.gov/pubmed/34621049
http://dx.doi.org/10.1038/s41418-021-00885-x
Descripción
Sumario:A limited delivery of oxygen and metabolic substrate to the heart caused by myocardial infarction (MI) impairs the cardiac function, and often results in heart failure. Here, we identified a circRNA (circ-SNRK) from SNRK (sucrose nonfermenting 1-related kinase, which can increase the cardiac mitochondrial efficiency) in cardiomyocytes (CMs). Circ-SNRK can sponge the miR-33 and in turn improved the ATP synthesis via SNRK, proving the existence of circ-SNRK - miR-33 - SNRK axis. Furthermore, we found that protein NOVA1 (NOVA alternative splicing regulator 1) could accelerate the circ-SNRK formation; a cleaved peptide (~55 kDa) from SNRK enters the nucleus and blocks the cyclization of circ-SNRK via binding to NOVA1. The aforementioned negative feedback of SNRK to circ-SNRK limited the SNRK at a proper level, and inhibited the protective role of circ-SNRK in ischemic heart. In addition, our in vivo experiment indicated that the overexpression of exogenic circ-SNRK could break this loop and improves the cardiac function post-MI in rats. Together, our results demonstrated that the negative loop of circ-SNRK with SNRK regulates the energy metabolism in CMs, thus might be a potential therapeutic target for heart failure.