Cargando…
Multi-fidelity information fusion with concatenated neural networks
Recently, computational modeling has shifted towards the use of statistical inference, deep learning, and other data-driven modeling frameworks. Although this shift in modeling holds promise in many applications like design optimization and real-time control by lowering the computational burden, tra...
Autores principales: | Pawar, Suraj, San, Omer, Vedula, Prakash, Rasheed, Adil, Kvamsdal, Trond |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989982/ https://www.ncbi.nlm.nih.gov/pubmed/35393511 http://dx.doi.org/10.1038/s41598-022-09938-8 |
Ejemplares similares
-
Variational multiscale reinforcement learning for discovering reduced order closure models of nonlinear spatiotemporal transport systems
por: San, Omer, et al.
Publicado: (2022) -
Decentralized digital twins of complex dynamical systems
por: San, Omer, et al.
Publicado: (2023) -
Multi-Fidelity Aerodynamic Data Fusion with a Deep Neural Network Modeling Method
por: He, Lei, et al.
Publicado: (2020) -
Isoscattering strings of concatenating graphs and networks
por: Ławniczak, Michał, et al.
Publicado: (2021) -
Spatially and Spectrally Concatenated Neural Networks for Efficient Lossless Compression of Hyperspectral Imagery
por: Jiang, Zhuocheng, et al.
Publicado: (2020)