Cargando…
A universal deep neural network for in-depth cleaning of single-cell RNA-Seq data
Single cell RNA sequencing (scRNA-Seq) is being widely used in biomedical research and generated enormous volume and diversity of data. The raw data contain multiple types of noise and technical artifacts, which need thorough cleaning. Existing denoising and imputation methods largely focus on a sin...
Autores principales: | Li, Hui, Brouwer, Cory R., Luo, Weijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8990021/ https://www.ncbi.nlm.nih.gov/pubmed/35393428 http://dx.doi.org/10.1038/s41467-022-29576-y |
Ejemplares similares
-
Combining gene ontology with deep neural networks to enhance the clustering of single cell RNA-Seq data
por: Peng, Jiajie, et al.
Publicado: (2019) -
Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data
por: Gundogdu, Pelin, et al.
Publicado: (2022) -
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019) -
Using neural networks for reducing the dimensions of single-cell RNA-Seq data
por: Lin, Chieh, et al.
Publicado: (2017) -
Pathview: an R/Bioconductor package for pathway-based data integration and visualization
por: Luo, Weijun, et al.
Publicado: (2013)