Cargando…

Dynamics of Dendritic Ice Freezing in Confinement

[Image: see text] We use high-speed photography to observe the dendritic freezing of ice between two closely spaced parallel plates. Measuring the propagation speeds of dendrites, we investigate whether there is a confinement-induced thermal influence upon the speed beyond that provided by a single...

Descripción completa

Detalles Bibliográficos
Autores principales: Campbell, James M., Sandnes, Bjørnar, Flekkøy, Eirik G., Måløy, Knut Jørgen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8990518/
https://www.ncbi.nlm.nih.gov/pubmed/35401053
http://dx.doi.org/10.1021/acs.cgd.1c01488
Descripción
Sumario:[Image: see text] We use high-speed photography to observe the dendritic freezing of ice between two closely spaced parallel plates. Measuring the propagation speeds of dendrites, we investigate whether there is a confinement-induced thermal influence upon the speed beyond that provided by a single surface. Plates of thermally insulating plastic and moderately thermally conductive glass are used alone and in combination, at temperatures between −10.6 and −4.8 °C, with separations between 17 and 135 μm wide. No effect of confinement was detected for propagation on glass surfaces, but a possible slowing of propagation speed was seen between insulating plates. The pattern of dendritic growth was also studied, with a change from curving to straight dendrites being strongly associated with a switch from a glass to a plastic substrate.