Cargando…
Improving performance of deep learning predictive models for COVID-19 by incorporating environmental parameters
The Coronavirus disease 2019 (COVID-19) pandemic has severely crippled the economy on a global scale. Effective and accurate forecasting models are essential for proper management and preparedness of the healthcare system and resources, eventually aiding in preventing the rapid spread of the disease...
Autores principales: | Wathore, Roshan, Rawlekar, Samyak, Anjum, Saima, Gupta, Ankit, Bherwani, Hemant, Labhasetwar, Nitin, Kumar, Rakesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Association for Gondwana Research. Published by Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8990533/ https://www.ncbi.nlm.nih.gov/pubmed/35431596 http://dx.doi.org/10.1016/j.gr.2022.03.014 |
Ejemplares similares
-
Understanding air and water borne transmission and survival of coronavirus: Insights and way forward for SARS-CoV-2
por: Wathore, Roshan, et al.
Publicado: (2020) -
Understanding COVID-19 transmission through Bayesian probabilistic modeling and GIS-based Voronoi approach: a policy perspective
por: Bherwani, Hemant, et al.
Publicado: (2020) -
Air pollution aggravating COVID-19 lethality? Exploration in Asian cities using statistical models
por: Gupta, Ankit, et al.
Publicado: (2020) -
Valuing burden of premature mortality attributable to air pollution in major million-plus non-attainment cities of India
por: Nair, Moorthy, et al.
Publicado: (2021) -
COVID-19 Creating another problem? Sustainable solution for PPE disposal through LCA approach
por: Kumar, Harender, et al.
Publicado: (2020)