Cargando…

A Data-Driven Fragmentation Model for Carbon Therapy GPU-Accelerated Monte-Carlo Dose Recalculation

The advent of Graphics Processing Units (GPU) has prompted the development of Monte Carlo (MC) algorithms that can significantly reduce the simulation time with respect to standard MC algorithms based on Central Processing Unit (CPU) hardware. The possibility to evaluate a complete treatment plan wi...

Descripción completa

Detalles Bibliográficos
Autores principales: De Simoni, Micol, Battistoni, Giuseppe, De Gregorio, Angelica, De Maria, Patrizia, Fischetti, Marta, Franciosini, Gaia, Marafini, Michela, Patera, Vincenzo, Sarti, Alessio, Toppi, Marco, Traini, Giacomo, Trigilio, Antonio, Schiavi, Angelo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8990885/
https://www.ncbi.nlm.nih.gov/pubmed/35402249
http://dx.doi.org/10.3389/fonc.2022.780784
_version_ 1784683472109961216
author De Simoni, Micol
Battistoni, Giuseppe
De Gregorio, Angelica
De Maria, Patrizia
Fischetti, Marta
Franciosini, Gaia
Marafini, Michela
Patera, Vincenzo
Sarti, Alessio
Toppi, Marco
Traini, Giacomo
Trigilio, Antonio
Schiavi, Angelo
author_facet De Simoni, Micol
Battistoni, Giuseppe
De Gregorio, Angelica
De Maria, Patrizia
Fischetti, Marta
Franciosini, Gaia
Marafini, Michela
Patera, Vincenzo
Sarti, Alessio
Toppi, Marco
Traini, Giacomo
Trigilio, Antonio
Schiavi, Angelo
author_sort De Simoni, Micol
collection PubMed
description The advent of Graphics Processing Units (GPU) has prompted the development of Monte Carlo (MC) algorithms that can significantly reduce the simulation time with respect to standard MC algorithms based on Central Processing Unit (CPU) hardware. The possibility to evaluate a complete treatment plan within minutes, instead of hours, paves the way for many clinical applications where the time-factor is important. FRED (Fast paRticle thErapy Dose evaluator) is a software that exploits the GPU power to recalculate and optimise ion beam treatment plans. The main goal when developing the FRED physics model was to balance accuracy, calculation time and GPU execution guidelines. Nowadays, FRED is already used as a quality assurance tool in Maastricht and Krakow proton clinical centers and as a research tool in several clinical and research centers across Europe. Lately the core software has been updated including a model of carbon ions interactions with matter. The implementation is phenomenological and based on carbon fragmentation data currently available. The model has been tested against the MC FLUKA software, commonly used in particle therapy, and a good agreement was found. In this paper, the new FRED data-driven model for carbon ion fragmentation will be presented together with the validation tests against the FLUKA MC software. The results will be discussed in the context of FRED clinical applications to (12)C ions treatment planning.
format Online
Article
Text
id pubmed-8990885
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-89908852022-04-09 A Data-Driven Fragmentation Model for Carbon Therapy GPU-Accelerated Monte-Carlo Dose Recalculation De Simoni, Micol Battistoni, Giuseppe De Gregorio, Angelica De Maria, Patrizia Fischetti, Marta Franciosini, Gaia Marafini, Michela Patera, Vincenzo Sarti, Alessio Toppi, Marco Traini, Giacomo Trigilio, Antonio Schiavi, Angelo Front Oncol Oncology The advent of Graphics Processing Units (GPU) has prompted the development of Monte Carlo (MC) algorithms that can significantly reduce the simulation time with respect to standard MC algorithms based on Central Processing Unit (CPU) hardware. The possibility to evaluate a complete treatment plan within minutes, instead of hours, paves the way for many clinical applications where the time-factor is important. FRED (Fast paRticle thErapy Dose evaluator) is a software that exploits the GPU power to recalculate and optimise ion beam treatment plans. The main goal when developing the FRED physics model was to balance accuracy, calculation time and GPU execution guidelines. Nowadays, FRED is already used as a quality assurance tool in Maastricht and Krakow proton clinical centers and as a research tool in several clinical and research centers across Europe. Lately the core software has been updated including a model of carbon ions interactions with matter. The implementation is phenomenological and based on carbon fragmentation data currently available. The model has been tested against the MC FLUKA software, commonly used in particle therapy, and a good agreement was found. In this paper, the new FRED data-driven model for carbon ion fragmentation will be presented together with the validation tests against the FLUKA MC software. The results will be discussed in the context of FRED clinical applications to (12)C ions treatment planning. Frontiers Media S.A. 2022-03-25 /pmc/articles/PMC8990885/ /pubmed/35402249 http://dx.doi.org/10.3389/fonc.2022.780784 Text en Copyright © 2022 De Simoni, Battistoni, De Gregorio, De Maria, Fischetti, Franciosini, Marafini, Patera, Sarti, Toppi, Traini, Trigilio and Schiavi https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
De Simoni, Micol
Battistoni, Giuseppe
De Gregorio, Angelica
De Maria, Patrizia
Fischetti, Marta
Franciosini, Gaia
Marafini, Michela
Patera, Vincenzo
Sarti, Alessio
Toppi, Marco
Traini, Giacomo
Trigilio, Antonio
Schiavi, Angelo
A Data-Driven Fragmentation Model for Carbon Therapy GPU-Accelerated Monte-Carlo Dose Recalculation
title A Data-Driven Fragmentation Model for Carbon Therapy GPU-Accelerated Monte-Carlo Dose Recalculation
title_full A Data-Driven Fragmentation Model for Carbon Therapy GPU-Accelerated Monte-Carlo Dose Recalculation
title_fullStr A Data-Driven Fragmentation Model for Carbon Therapy GPU-Accelerated Monte-Carlo Dose Recalculation
title_full_unstemmed A Data-Driven Fragmentation Model for Carbon Therapy GPU-Accelerated Monte-Carlo Dose Recalculation
title_short A Data-Driven Fragmentation Model for Carbon Therapy GPU-Accelerated Monte-Carlo Dose Recalculation
title_sort data-driven fragmentation model for carbon therapy gpu-accelerated monte-carlo dose recalculation
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8990885/
https://www.ncbi.nlm.nih.gov/pubmed/35402249
http://dx.doi.org/10.3389/fonc.2022.780784
work_keys_str_mv AT desimonimicol adatadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT battistonigiuseppe adatadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT degregorioangelica adatadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT demariapatrizia adatadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT fischettimarta adatadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT franciosinigaia adatadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT marafinimichela adatadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT pateravincenzo adatadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT sartialessio adatadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT toppimarco adatadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT trainigiacomo adatadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT trigilioantonio adatadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT schiaviangelo adatadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT desimonimicol datadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT battistonigiuseppe datadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT degregorioangelica datadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT demariapatrizia datadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT fischettimarta datadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT franciosinigaia datadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT marafinimichela datadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT pateravincenzo datadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT sartialessio datadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT toppimarco datadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT trainigiacomo datadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT trigilioantonio datadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation
AT schiaviangelo datadrivenfragmentationmodelforcarbontherapygpuacceleratedmontecarlodoserecalculation