Cargando…
RGMQL: scalable and interoperable computing of heterogeneous omics big data and metadata in R/Bioconductor
BACKGROUND: Heterogeneous omics data, increasingly collected through high-throughput technologies, can contain hidden answers to very important and still unsolved biomedical questions. Their integration and processing are crucial mostly for tertiary analysis of Next Generation Sequencing data, altho...
Autores principales: | Pallotta, Simone, Cascianelli, Silvia, Masseroli, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991469/ https://www.ncbi.nlm.nih.gov/pubmed/35392801 http://dx.doi.org/10.1186/s12859-022-04648-4 |
Ejemplares similares
-
Identification of transcription factor high accumulation DNA zones
por: Cascianelli, Silvia, et al.
Publicado: (2023) -
Omics Metadata Management Software (OMMS)
por: Perez-Arriaga, Martha O, et al.
Publicado: (2015) -
Explorative visual analytics on interval-based genomic data and their metadata
por: Jalili, Vahid, et al.
Publicado: (2017) -
SPEAQeasy: a scalable pipeline for expression analysis and quantification for R/bioconductor-powered RNA-seq analyses
por: Eagles, Nicholas J., et al.
Publicado: (2021) -
FindIT2: an R/Bioconductor package to identify influential transcription factor and targets based on multi-omics data
por: Shang, Guan-Dong, et al.
Publicado: (2022)