Cargando…
A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images
BACKGROUND: Four-dimensional cone-beam computed tomography (4D-CBCT) can visualize moving tumors, thus adaptive radiation therapy (ART) could be improved if 4D-CBCT were used. However, 4D-CBCT images suffer from severe imaging artifacts. The aim of this study is to investigate the use of synthetic 4...
Autores principales: | Usui, Keisuke, Ogawa, Koichi, Goto, Masami, Sakano, Yasuaki, Kyougoku, Shinsuke, Daida, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991563/ https://www.ncbi.nlm.nih.gov/pubmed/35392947 http://dx.doi.org/10.1186/s13014-022-02042-1 |
Ejemplares similares
-
Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography
por: Usui, Keisuke, et al.
Publicado: (2021) -
Evaluation of motion artefact reduction depending on the artefacts’ directions in head MRI using conditional generative adversarial networks
por: Usui, Keisuke, et al.
Publicado: (2023) -
On the evaluation of mobile target trajectory between four‐dimensional computer tomography and four‐dimensional cone‐beam computer tomography
por: Baley, Colton, et al.
Publicado: (2021) -
Influence of Mild White Matter Lesions on Voxel-based Morphometry
por: Goto, Masami, et al.
Publicado: (2020) -
Application of four-dimensional cone beam computed tomography in lung cancer radiotherapy
por: Abulimiti, Muyasha, et al.
Publicado: (2023)