Cargando…
Beet (Beta vulgaris L.) stalk and leaf supplementation changes the glucose homeostasis and inflammatory markers in the liver of mice exposed to a high-fat diet
Although beet stalks and leaves are not consumed and are usually discarded, they are an important source of bioactive flavonoids possessing antioxidant and anti-inflammatory activity. The aim of this study was to assess the effect of supplementation with beet stalks and leaves on metabolic parameter...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991781/ https://www.ncbi.nlm.nih.gov/pubmed/35415624 http://dx.doi.org/10.1016/j.fochms.2021.100018 |
Sumario: | Although beet stalks and leaves are not consumed and are usually discarded, they are an important source of bioactive flavonoids possessing antioxidant and anti-inflammatory activity. The aim of this study was to assess the effect of supplementation with beet stalks and leaves on metabolic parameters and glucose homeostasis in mice exposed to a high-fat diet. Six-week-old male Swiss mice were randomly divided into five experimental groups submitted to either standard diet (CT) or high-fat diet (HF), and HF-fed mice were subdivided into three treatment groups supplemented with oven-dehydrated beet stalks and leaves (SL), lyophilized beet stalks and leaves (Ly) or beet stalk and leaf extract (EX). Supplementation with SL promoted a mild improvement in the glucose homeostasis and decreased the protein levels of TNFα with no alterations in hepatic triglyceride content. It remains to be clarified if the enhancement in the glucose homeostasis observed in HFSL could be a consequence of improvement in pancreatic insulin secretion and/or glucose uptake from skeletal muscle and white adipose tissues. |
---|