Cargando…
Lignin and Keratin-Based Materials in Transient Devices and Disposables: Recent Advances Toward Materials and Environmental Sustainability
[Image: see text] Rising concerns and the associated negative implications of pollution from e-waste and delayed decomposition and mineralization of component materials (e.g., plastics) are significant environmental challenges. Hence, concerted pursuit of accurate and efficient control of the life c...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991899/ https://www.ncbi.nlm.nih.gov/pubmed/35415330 http://dx.doi.org/10.1021/acsomega.1c07372 |
_version_ | 1784683667387318272 |
---|---|
author | Chinomso Iroegbu, Austine Ofondu Ray, Suprakas Sinha |
author_facet | Chinomso Iroegbu, Austine Ofondu Ray, Suprakas Sinha |
author_sort | Chinomso Iroegbu, Austine Ofondu |
collection | PubMed |
description | [Image: see text] Rising concerns and the associated negative implications of pollution from e-waste and delayed decomposition and mineralization of component materials (e.g., plastics) are significant environmental challenges. Hence, concerted pursuit of accurate and efficient control of the life cycle of materials and subsequent dematerialization in target environments has become essential in recent times. The emerging field of transient technology will play a significant role in this regard to help overcome current environmental challenges by enabling the use of novel approaches and new materials with unique functionalities to produce devices and materials such as disposable diagnostic devices, flexible solar panels, and foldable displays that are more ecologically benign, low-cost, and sustainable. The prerequisites for materials employed in transient devices and disposables include biodegradability, biocompatibility, and the inherent ability to mineralize or dissipate in target environments (e.g., body fluids) in a short lifetime with net-zero impact. Biomaterials such as lignin and keratin are well-known to be among the most promising environmentally benign, functional, sustainable, and industrially applicable resources for transient devices and disposables. Consequently, considering the current environmental concerns, this work focuses on the advances in applying lignin and keratin-based materials in short-life electronics and single-use consumables, current limitations, future research outlook toward materials, and environmental sustainability. |
format | Online Article Text |
id | pubmed-8991899 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-89918992022-04-11 Lignin and Keratin-Based Materials in Transient Devices and Disposables: Recent Advances Toward Materials and Environmental Sustainability Chinomso Iroegbu, Austine Ofondu Ray, Suprakas Sinha ACS Omega [Image: see text] Rising concerns and the associated negative implications of pollution from e-waste and delayed decomposition and mineralization of component materials (e.g., plastics) are significant environmental challenges. Hence, concerted pursuit of accurate and efficient control of the life cycle of materials and subsequent dematerialization in target environments has become essential in recent times. The emerging field of transient technology will play a significant role in this regard to help overcome current environmental challenges by enabling the use of novel approaches and new materials with unique functionalities to produce devices and materials such as disposable diagnostic devices, flexible solar panels, and foldable displays that are more ecologically benign, low-cost, and sustainable. The prerequisites for materials employed in transient devices and disposables include biodegradability, biocompatibility, and the inherent ability to mineralize or dissipate in target environments (e.g., body fluids) in a short lifetime with net-zero impact. Biomaterials such as lignin and keratin are well-known to be among the most promising environmentally benign, functional, sustainable, and industrially applicable resources for transient devices and disposables. Consequently, considering the current environmental concerns, this work focuses on the advances in applying lignin and keratin-based materials in short-life electronics and single-use consumables, current limitations, future research outlook toward materials, and environmental sustainability. American Chemical Society 2022-03-25 /pmc/articles/PMC8991899/ /pubmed/35415330 http://dx.doi.org/10.1021/acsomega.1c07372 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Chinomso Iroegbu, Austine Ofondu Ray, Suprakas Sinha Lignin and Keratin-Based Materials in Transient Devices and Disposables: Recent Advances Toward Materials and Environmental Sustainability |
title | Lignin and Keratin-Based Materials in Transient Devices
and Disposables: Recent Advances Toward Materials and Environmental
Sustainability |
title_full | Lignin and Keratin-Based Materials in Transient Devices
and Disposables: Recent Advances Toward Materials and Environmental
Sustainability |
title_fullStr | Lignin and Keratin-Based Materials in Transient Devices
and Disposables: Recent Advances Toward Materials and Environmental
Sustainability |
title_full_unstemmed | Lignin and Keratin-Based Materials in Transient Devices
and Disposables: Recent Advances Toward Materials and Environmental
Sustainability |
title_short | Lignin and Keratin-Based Materials in Transient Devices
and Disposables: Recent Advances Toward Materials and Environmental
Sustainability |
title_sort | lignin and keratin-based materials in transient devices
and disposables: recent advances toward materials and environmental
sustainability |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991899/ https://www.ncbi.nlm.nih.gov/pubmed/35415330 http://dx.doi.org/10.1021/acsomega.1c07372 |
work_keys_str_mv | AT chinomsoiroegbuaustineofondu ligninandkeratinbasedmaterialsintransientdevicesanddisposablesrecentadvancestowardmaterialsandenvironmentalsustainability AT raysuprakassinha ligninandkeratinbasedmaterialsintransientdevicesanddisposablesrecentadvancestowardmaterialsandenvironmentalsustainability |