Cargando…
Machine learning models outperform deep learning models, provide interpretation and facilitate feature selection for soybean trait prediction
Recent growth in crop genomic and trait data have opened opportunities for the application of novel approaches to accelerate crop improvement. Machine learning and deep learning are at the forefront of prediction-based data analysis. However, few approaches for genotype to phenotype prediction compa...
Autores principales: | Gill, Mitchell, Anderson, Robyn, Hu, Haifei, Bennamoun, Mohammed, Petereit, Jakob, Valliyodan, Babu, Nguyen, Henry T., Batley, Jacqueline, Bayer, Philipp E., Edwards, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991976/ https://www.ncbi.nlm.nih.gov/pubmed/35395721 http://dx.doi.org/10.1186/s12870-022-03559-z |
Ejemplares similares
-
Haplotype mapping uncovers unexplored variation in wild and domesticated soybean at the major protein locus cqProt-003
por: Marsh, Jacob I., et al.
Publicado: (2022) -
Evaluating Plant Gene Models Using Machine Learning
por: Upadhyaya, Shriprabha R., et al.
Publicado: (2022) -
Plant Genotype to Phenotype Prediction Using Machine Learning
por: Danilevicz, Monica F., et al.
Publicado: (2022) -
DNABERT-based explainable lncRNA identification in plant genome assemblies
por: Danilevicz, Monica F., et al.
Publicado: (2023) -
Genetic and Genomic Resources for Soybean Breeding Research
por: Petereit, Jakob, et al.
Publicado: (2022)