Cargando…
Optimizing Graphical Procedures for Multiplicity Control in a Confirmatory Clinical Trial via Deep Learning
In confirmatory clinical trials, it has been proposed to use a simple iterative graphical approach to construct and perform intersection hypotheses tests with a weighted Bonferroni-type procedure to control Type I errors in the strong sense. Given Phase II study results or other prior knowledge, it...
Autores principales: | Zhan, Tianyu, Hartford, Alan, Kang, Jian, Offen, Walter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992139/ https://www.ncbi.nlm.nih.gov/pubmed/35401935 http://dx.doi.org/10.1080/19466315.2020.1799855 |
Ejemplares similares
-
Procedural elements for computer graphics
por: Rogers, David F., 1937-
Publicado: (1985) -
Statistical Graphics Procedures by Example
por: Matange, Sanjay, et al.
Publicado: (2014) -
Finite-Sample Two-Group Composite Hypothesis Testing via Machine Learning
por: Zhan, Tianyu, et al.
Publicado: (2022) -
On the need to adjust for multiplicity in confirmatory clinical trials with master protocols
por: Stallard, N, et al.
Publicado: (2019) -
Statistical graphics in SAS: an introduction to the graph template language and the statistical graphics procedures
por: Kuhfeld, Warren F
Publicado: (2010)