Cargando…
Ternary Deep Eutectic Solvent (DES) with a Regulated Rate-Determining Step for Efficient Recycling of Lithium Cobalt Oxide
[Image: see text] Deep eutectic solvents (DESs) have attracted extensive research for their potential applications as leaching solvent to recycle valuable metal elements from spent lithium ion batteries (LIBs). Despite various advantages like being economical and green, the full potential of convent...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992278/ https://www.ncbi.nlm.nih.gov/pubmed/35415356 http://dx.doi.org/10.1021/acsomega.2c00742 |
_version_ | 1784683704048680960 |
---|---|
author | Huang, Fengyu Li, Taibai Yan, Xiaohui Xiong, Yige Zhang, Xin Lu, Shengtao An, Nana Huang, Wenxia Guo, Qihui Ge, Xiang |
author_facet | Huang, Fengyu Li, Taibai Yan, Xiaohui Xiong, Yige Zhang, Xin Lu, Shengtao An, Nana Huang, Wenxia Guo, Qihui Ge, Xiang |
author_sort | Huang, Fengyu |
collection | PubMed |
description | [Image: see text] Deep eutectic solvents (DESs) have attracted extensive research for their potential applications as leaching solvent to recycle valuable metal elements from spent lithium ion batteries (LIBs). Despite various advantages like being economical and green, the full potential of conventional binary DES has not yet been harnessed because of the kinetics during leaching. Herein, we consider the fundamental rate-determining-step (RDS) in conventional binary DES and attempt to design ternary DES, within which the chemical reaction kinetics and diffusion kinetics can be regulated to maximize the overall leaching rate. As a proof of concept, we show that the ternary choline chloride/succinic acid/ethylene glycol (ChCl/SA/EG) type ternary DES can completely dissolve LCO powder at 140 °C in 16 h. By systematically studying the leaching process at various conditions, the energy barrier during leaching can be calculated to be 11.77 kJ/mol. Furthermore, we demonstrate that the extraction of the cobalt ions from the leaching solution can be directly achieved by adding oxalic ions without neutralizing the solution. The precipitate can be used to regenerate LCO with high purity. The recycled materials show comparable electrochemical performance with commercial LCO. Our design strategy of ternary DES with regulated RDS is expected to have both scientific and technological significance in the field of hydrometallurgical recycling of LIBs. |
format | Online Article Text |
id | pubmed-8992278 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-89922782022-04-11 Ternary Deep Eutectic Solvent (DES) with a Regulated Rate-Determining Step for Efficient Recycling of Lithium Cobalt Oxide Huang, Fengyu Li, Taibai Yan, Xiaohui Xiong, Yige Zhang, Xin Lu, Shengtao An, Nana Huang, Wenxia Guo, Qihui Ge, Xiang ACS Omega [Image: see text] Deep eutectic solvents (DESs) have attracted extensive research for their potential applications as leaching solvent to recycle valuable metal elements from spent lithium ion batteries (LIBs). Despite various advantages like being economical and green, the full potential of conventional binary DES has not yet been harnessed because of the kinetics during leaching. Herein, we consider the fundamental rate-determining-step (RDS) in conventional binary DES and attempt to design ternary DES, within which the chemical reaction kinetics and diffusion kinetics can be regulated to maximize the overall leaching rate. As a proof of concept, we show that the ternary choline chloride/succinic acid/ethylene glycol (ChCl/SA/EG) type ternary DES can completely dissolve LCO powder at 140 °C in 16 h. By systematically studying the leaching process at various conditions, the energy barrier during leaching can be calculated to be 11.77 kJ/mol. Furthermore, we demonstrate that the extraction of the cobalt ions from the leaching solution can be directly achieved by adding oxalic ions without neutralizing the solution. The precipitate can be used to regenerate LCO with high purity. The recycled materials show comparable electrochemical performance with commercial LCO. Our design strategy of ternary DES with regulated RDS is expected to have both scientific and technological significance in the field of hydrometallurgical recycling of LIBs. American Chemical Society 2022-03-24 /pmc/articles/PMC8992278/ /pubmed/35415356 http://dx.doi.org/10.1021/acsomega.2c00742 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Huang, Fengyu Li, Taibai Yan, Xiaohui Xiong, Yige Zhang, Xin Lu, Shengtao An, Nana Huang, Wenxia Guo, Qihui Ge, Xiang Ternary Deep Eutectic Solvent (DES) with a Regulated Rate-Determining Step for Efficient Recycling of Lithium Cobalt Oxide |
title | Ternary Deep Eutectic Solvent (DES) with a Regulated
Rate-Determining Step for Efficient Recycling of Lithium Cobalt Oxide |
title_full | Ternary Deep Eutectic Solvent (DES) with a Regulated
Rate-Determining Step for Efficient Recycling of Lithium Cobalt Oxide |
title_fullStr | Ternary Deep Eutectic Solvent (DES) with a Regulated
Rate-Determining Step for Efficient Recycling of Lithium Cobalt Oxide |
title_full_unstemmed | Ternary Deep Eutectic Solvent (DES) with a Regulated
Rate-Determining Step for Efficient Recycling of Lithium Cobalt Oxide |
title_short | Ternary Deep Eutectic Solvent (DES) with a Regulated
Rate-Determining Step for Efficient Recycling of Lithium Cobalt Oxide |
title_sort | ternary deep eutectic solvent (des) with a regulated
rate-determining step for efficient recycling of lithium cobalt oxide |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992278/ https://www.ncbi.nlm.nih.gov/pubmed/35415356 http://dx.doi.org/10.1021/acsomega.2c00742 |
work_keys_str_mv | AT huangfengyu ternarydeepeutecticsolventdeswitharegulatedratedeterminingstepforefficientrecyclingoflithiumcobaltoxide AT litaibai ternarydeepeutecticsolventdeswitharegulatedratedeterminingstepforefficientrecyclingoflithiumcobaltoxide AT yanxiaohui ternarydeepeutecticsolventdeswitharegulatedratedeterminingstepforefficientrecyclingoflithiumcobaltoxide AT xiongyige ternarydeepeutecticsolventdeswitharegulatedratedeterminingstepforefficientrecyclingoflithiumcobaltoxide AT zhangxin ternarydeepeutecticsolventdeswitharegulatedratedeterminingstepforefficientrecyclingoflithiumcobaltoxide AT lushengtao ternarydeepeutecticsolventdeswitharegulatedratedeterminingstepforefficientrecyclingoflithiumcobaltoxide AT annana ternarydeepeutecticsolventdeswitharegulatedratedeterminingstepforefficientrecyclingoflithiumcobaltoxide AT huangwenxia ternarydeepeutecticsolventdeswitharegulatedratedeterminingstepforefficientrecyclingoflithiumcobaltoxide AT guoqihui ternarydeepeutecticsolventdeswitharegulatedratedeterminingstepforefficientrecyclingoflithiumcobaltoxide AT gexiang ternarydeepeutecticsolventdeswitharegulatedratedeterminingstepforefficientrecyclingoflithiumcobaltoxide |