Cargando…
Orthogonal representations for robust context-dependent task performance in brains and neural networks
How do neural populations code for multiple, potentially conflicting tasks? Here we used computational simulations involving neural networks to define “lazy” and “rich” coding solutions to this context-dependent decision-making problem, which trade off learning speed for robustness. During lazy lear...
Autores principales: | Flesch, Timo, Juechems, Keno, Dumbalska, Tsvetomira, Saxe, Andrew, Summerfield, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992799/ https://www.ncbi.nlm.nih.gov/pubmed/35085492 http://dx.doi.org/10.1016/j.neuron.2022.01.005 |
Ejemplares similares
-
Orthogonal representations for robust context-dependent task performance in brains and neural networks
por: Flesch, Timo, et al.
Publicado: (2022) -
Neural knowledge assembly in humans and neural networks
por: Nelli, Stephanie, et al.
Publicado: (2023) -
Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals
por: Flesch, Timo, et al.
Publicado: (2023) -
A map of decoy influence in human multialternative choice
por: Dumbalska, Tsvetomira, et al.
Publicado: (2020) -
How do (perceptual) distracters distract?
por: Dumbalska, Tsvetomira, et al.
Publicado: (2022)