Cargando…
Three‐dimensional deep neural network for automatic delineation of cervical cancer in planning computed tomography images
PURPOSE: Radiation therapy is an essential treatment modality for cervical cancer, while accurate and efficient segmentation methods are needed to improve the workflow. In this study, a three‐dimensional V‐net model is proposed to automatically segment clinical target volume (CTV) and organs at risk...
Autores principales: | Ding, Yi, Chen, Zhiran, Wang, Ziqi, Wang, Xiaohong, Hu, Desheng, Ma, Pingping, Ma, Chi, Wei, Wei, Li, Xiangbin, Xue, Xudong, Wang, Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992957/ https://www.ncbi.nlm.nih.gov/pubmed/35192243 http://dx.doi.org/10.1002/acm2.13566 |
Ejemplares similares
-
Delineation of prostatic calcification using quantitative susceptibility mapping: Spatial accuracy for magnetic resonance‐only radiotherapy planning
por: Kan, Hirohito, et al.
Publicado: (2021) -
Three-dimensional planning in craniomaxillofacial surgery
por: Rubio-Palau, Josep, et al.
Publicado: (2016) -
Development and validation of a checklist for use with automatically generated radiotherapy plans
por: Nealon, Kelly A., et al.
Publicado: (2022) -
Application report of automatic unlocking baseplate in radiotherapy
por: Li, Lintao, et al.
Publicado: (2022) -
Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning
Methods for Dose Calculation of Nasopharyngeal Carcinoma
Radiotherapy
por: Xue, Xudong, et al.
Publicado: (2021)