Cargando…
Explainable death toll motion modeling: COVID-19 data-driven narratives
Models have gained the spotlight in many discussions surrounding COVID-19. The urgency for timely decisions resulted in a multitude of models as informed policy actions must be made even when so many uncertainties about the pandemic still remain. In this paper, we use machine learning algorithms to...
Autores principales: | Veloso, Adriano, Ziviani, Nivio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8993006/ https://www.ncbi.nlm.nih.gov/pubmed/35394997 http://dx.doi.org/10.1371/journal.pone.0264893 |
Ejemplares similares
-
Data-driven multiscale modelling and analysis of COVID-19 spatiotemporal evolution using explainable AI
por: Chew, Alvin Wei Ze, et al.
Publicado: (2022) -
Explaining the physics of transfer learning in data-driven turbulence modeling
por: Subel, Adam, et al.
Publicado: (2023) -
The Unrecognized Death Toll of COVID-19 in the United States
por: Moghadas, Seyed M., et al.
Publicado: (2021) -
An alternative estimation of the death toll of the Covid-19 pandemic in India
por: Guilmoto, Christophe Z.
Publicado: (2022) -
Estimating the early death toll of COVID-19 in the United States
por: Weinberger, Daniel M., et al.
Publicado: (2020)