Cargando…

Z-α(1)-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state

Misfolding of secretory proteins in the endoplasmic reticulum (ER) features in many human diseases. In α(1)-antitrypsin deficiency, the pathogenic Z variant aberrantly assembles into polymers in the hepatocyte ER, leading to cirrhosis. We show that α(1)-antitrypsin polymers undergo a liquid:solid ph...

Descripción completa

Detalles Bibliográficos
Autores principales: Chambers, Joseph E., Zubkov, Nikita, Kubánková, Markéta, Nixon-Abell, Jonathon, Mela, Ioanna, Abreu, Susana, Schwiening, Max, Lavarda, Giulia, López-Duarte, Ismael, Dickens, Jennifer A., Torres, Tomás, Kaminski, Clemens F., Holt, Liam J., Avezov, Edward, Huntington, James A., George-Hyslop, Peter St, Kuimova, Marina K., Marciniak, Stefan J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8993113/
https://www.ncbi.nlm.nih.gov/pubmed/35394846
http://dx.doi.org/10.1126/sciadv.abm2094
Descripción
Sumario:Misfolding of secretory proteins in the endoplasmic reticulum (ER) features in many human diseases. In α(1)-antitrypsin deficiency, the pathogenic Z variant aberrantly assembles into polymers in the hepatocyte ER, leading to cirrhosis. We show that α(1)-antitrypsin polymers undergo a liquid:solid phase transition, forming a protein matrix that retards mobility of ER proteins by size-dependent molecular filtration. The Z-α(1)-antitrypsin phase transition is promoted during ER stress by an ATF6-mediated unfolded protein response. Furthermore, the ER chaperone calreticulin promotes Z-α(1)-antitrypsin solidification and increases protein matrix stiffness. Single-particle tracking reveals that solidification initiates in cells with normal ER morphology, previously assumed to represent a healthy pool. We show that Z-α(1)-antitrypsin–induced hypersensitivity to ER stress can be explained by immobilization of ER chaperones within the polymer matrix. This previously unidentified mechanism of ER dysfunction provides a template for understanding a diverse group of related proteinopathies and identifies ER chaperones as potential therapeutic targets.