Cargando…

Z-α(1)-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state

Misfolding of secretory proteins in the endoplasmic reticulum (ER) features in many human diseases. In α(1)-antitrypsin deficiency, the pathogenic Z variant aberrantly assembles into polymers in the hepatocyte ER, leading to cirrhosis. We show that α(1)-antitrypsin polymers undergo a liquid:solid ph...

Descripción completa

Detalles Bibliográficos
Autores principales: Chambers, Joseph E., Zubkov, Nikita, Kubánková, Markéta, Nixon-Abell, Jonathon, Mela, Ioanna, Abreu, Susana, Schwiening, Max, Lavarda, Giulia, López-Duarte, Ismael, Dickens, Jennifer A., Torres, Tomás, Kaminski, Clemens F., Holt, Liam J., Avezov, Edward, Huntington, James A., George-Hyslop, Peter St, Kuimova, Marina K., Marciniak, Stefan J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8993113/
https://www.ncbi.nlm.nih.gov/pubmed/35394846
http://dx.doi.org/10.1126/sciadv.abm2094
_version_ 1784683847459274752
author Chambers, Joseph E.
Zubkov, Nikita
Kubánková, Markéta
Nixon-Abell, Jonathon
Mela, Ioanna
Abreu, Susana
Schwiening, Max
Lavarda, Giulia
López-Duarte, Ismael
Dickens, Jennifer A.
Torres, Tomás
Kaminski, Clemens F.
Holt, Liam J.
Avezov, Edward
Huntington, James A.
George-Hyslop, Peter St
Kuimova, Marina K.
Marciniak, Stefan J.
author_facet Chambers, Joseph E.
Zubkov, Nikita
Kubánková, Markéta
Nixon-Abell, Jonathon
Mela, Ioanna
Abreu, Susana
Schwiening, Max
Lavarda, Giulia
López-Duarte, Ismael
Dickens, Jennifer A.
Torres, Tomás
Kaminski, Clemens F.
Holt, Liam J.
Avezov, Edward
Huntington, James A.
George-Hyslop, Peter St
Kuimova, Marina K.
Marciniak, Stefan J.
author_sort Chambers, Joseph E.
collection PubMed
description Misfolding of secretory proteins in the endoplasmic reticulum (ER) features in many human diseases. In α(1)-antitrypsin deficiency, the pathogenic Z variant aberrantly assembles into polymers in the hepatocyte ER, leading to cirrhosis. We show that α(1)-antitrypsin polymers undergo a liquid:solid phase transition, forming a protein matrix that retards mobility of ER proteins by size-dependent molecular filtration. The Z-α(1)-antitrypsin phase transition is promoted during ER stress by an ATF6-mediated unfolded protein response. Furthermore, the ER chaperone calreticulin promotes Z-α(1)-antitrypsin solidification and increases protein matrix stiffness. Single-particle tracking reveals that solidification initiates in cells with normal ER morphology, previously assumed to represent a healthy pool. We show that Z-α(1)-antitrypsin–induced hypersensitivity to ER stress can be explained by immobilization of ER chaperones within the polymer matrix. This previously unidentified mechanism of ER dysfunction provides a template for understanding a diverse group of related proteinopathies and identifies ER chaperones as potential therapeutic targets.
format Online
Article
Text
id pubmed-8993113
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-89931132022-04-22 Z-α(1)-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state Chambers, Joseph E. Zubkov, Nikita Kubánková, Markéta Nixon-Abell, Jonathon Mela, Ioanna Abreu, Susana Schwiening, Max Lavarda, Giulia López-Duarte, Ismael Dickens, Jennifer A. Torres, Tomás Kaminski, Clemens F. Holt, Liam J. Avezov, Edward Huntington, James A. George-Hyslop, Peter St Kuimova, Marina K. Marciniak, Stefan J. Sci Adv Biomedicine and Life Sciences Misfolding of secretory proteins in the endoplasmic reticulum (ER) features in many human diseases. In α(1)-antitrypsin deficiency, the pathogenic Z variant aberrantly assembles into polymers in the hepatocyte ER, leading to cirrhosis. We show that α(1)-antitrypsin polymers undergo a liquid:solid phase transition, forming a protein matrix that retards mobility of ER proteins by size-dependent molecular filtration. The Z-α(1)-antitrypsin phase transition is promoted during ER stress by an ATF6-mediated unfolded protein response. Furthermore, the ER chaperone calreticulin promotes Z-α(1)-antitrypsin solidification and increases protein matrix stiffness. Single-particle tracking reveals that solidification initiates in cells with normal ER morphology, previously assumed to represent a healthy pool. We show that Z-α(1)-antitrypsin–induced hypersensitivity to ER stress can be explained by immobilization of ER chaperones within the polymer matrix. This previously unidentified mechanism of ER dysfunction provides a template for understanding a diverse group of related proteinopathies and identifies ER chaperones as potential therapeutic targets. American Association for the Advancement of Science 2022-04-08 /pmc/articles/PMC8993113/ /pubmed/35394846 http://dx.doi.org/10.1126/sciadv.abm2094 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Chambers, Joseph E.
Zubkov, Nikita
Kubánková, Markéta
Nixon-Abell, Jonathon
Mela, Ioanna
Abreu, Susana
Schwiening, Max
Lavarda, Giulia
López-Duarte, Ismael
Dickens, Jennifer A.
Torres, Tomás
Kaminski, Clemens F.
Holt, Liam J.
Avezov, Edward
Huntington, James A.
George-Hyslop, Peter St
Kuimova, Marina K.
Marciniak, Stefan J.
Z-α(1)-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state
title Z-α(1)-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state
title_full Z-α(1)-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state
title_fullStr Z-α(1)-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state
title_full_unstemmed Z-α(1)-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state
title_short Z-α(1)-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state
title_sort z-α(1)-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8993113/
https://www.ncbi.nlm.nih.gov/pubmed/35394846
http://dx.doi.org/10.1126/sciadv.abm2094
work_keys_str_mv AT chambersjosephe za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT zubkovnikita za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT kubankovamarketa za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT nixonabelljonathon za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT melaioanna za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT abreususana za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT schwieningmax za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT lavardagiulia za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT lopezduarteismael za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT dickensjennifera za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT torrestomas za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT kaminskiclemensf za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT holtliamj za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT avezovedward za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT huntingtonjamesa za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT georgehysloppeterst za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT kuimovamarinak za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate
AT marciniakstefanj za1antitrypsinpolymersimposemolecularfiltrationintheendoplasmicreticulumafterundergoingphasetransitiontoasolidstate