Cargando…
Data-Driven Framework for Understanding and Predicting Air Quality in Urban Areas
Monitoring, predicting, and controlling the air quality in urban areas is one of the effective solutions for tackling the climate change problem. Leveraging the availability of big data in different domains like pollutant concentration, urban traffic, aerial imagery of terrains and vegetation, and w...
Autores principales: | Babu Saheer, Lakshmi, Bhasy, Ajay, Maktabdar, Mahdi, Zarrin, Javad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8993228/ https://www.ncbi.nlm.nih.gov/pubmed/35402904 http://dx.doi.org/10.3389/fdata.2022.822573 |
Ejemplares similares
-
Mining and Analysis of Air Quality Data to Aid Climate Change
por: Babu Saheer, Lakshmi, et al.
Publicado: (2020) -
Editorial: Statistical Learning for Predicting Air Quality
por: Rybarczyk, Yves Philippe, et al.
Publicado: (2022) -
Pharmacogenomics driven decision support prototype with machine learning: A framework for improving patient care
por: Kidwai-Khan, Farah, et al.
Publicado: (2022) -
Air Quality Forecast by Statistical Methods: Application to Portugal and Macao
por: Mendes, Luísa, et al.
Publicado: (2022) -
Iowa Urban FEWS: Integrating Social and Biophysical Models for Exploration of Urban Food, Energy, and Water Systems
por: Thompson, Jan, et al.
Publicado: (2021)