Cargando…

Identification of Prognostic Markers of N6-Methylandenosine-Related Noncoding RNAs in Non-Small-Cell Lung Cancer

BACKGROUND: Non-small-cell lung cancer (NSCLC) is a major type of lung carcinoma that threatens the health and life of humans worldwide. We aimed to establish an n6-methyladenosine (m6A)-relevant ncRNA model to effectively evaluate the outcome of patients. METHODS: m6A-Related ncRNAs (lncRNA/miRNA)...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zexin, Li, Jing, Lu, Ke, Wu, Wenfeng, Huang, Ziyi, Zhang, Chi, Guo, Wei, Li, Jiayin, Lin, Lizhu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8993551/
https://www.ncbi.nlm.nih.gov/pubmed/35401751
http://dx.doi.org/10.1155/2022/3657349
Descripción
Sumario:BACKGROUND: Non-small-cell lung cancer (NSCLC) is a major type of lung carcinoma that threatens the health and life of humans worldwide. We aimed to establish an n6-methyladenosine (m6A)-relevant ncRNA model to effectively evaluate the outcome of patients. METHODS: m6A-Related ncRNAs (lncRNA/miRNA) were acquired from the UCSC Xena database. Pearson's correlation analysis among 21 m6A regulatory factors and ncRNAs were implemented to explore m6A-relevant ncRNAs. Weighted gene co-expression network analysis (WGCNA) identified hub modules of gene associated with prognosis of NSCLC patients. Univariate Cox regression analysis identified 80 m6A-related ncRNAs. Least absolute shrinkage and selector operation (LASSO) filtered out redundant factors and established a risk score model (m6A-NSCLC) in the TCGA training data set. Validation of prognostic ability was performed using testing data sets from the TCGA database. We also conducted a correlation analysis among the risk score and different clinical traits. Both univariate and multivariate Cox analyses were combined to verify prognostic factors which have independent value, and a nomogram on the basis of m6A-NSCLC risk scores and clinical traits was constructed to assess the prognosis of patients. In addition, we screened differentially expressed genes (DEGs) based on different risk scores and performed enrichment analysis. Finally, 21 m6A regulators were detected to be differentially expressed between two risk groups. RESULTS: An m6A-NSCLC risk model with 18 ncRNAs was constructed. By comparison with low-risk patients, high-risk score patients had poor prognosis. The distribution of risk score in the tumor size and extent (T), number of near lymph nodes (N), clinical stage, sex, and tumor types was significantly different. The risk score could act as an independent prognostic factor with the nomogram assessing overall survival in NSCLC. DEGs inherent to cell movement and immune regulation were involved in NSCLC development. Furthermore, 18 of 21 m6A regulators were differentially expressed, implying their correlation to survival prognosis. CONCLUSION: The m6A-NSCLC could be effectively utilized for evaluation of prognosis of patients.