Cargando…
Why was this cited? Explainable machine learning applied to COVID-19 research literature
Multiple studies have investigated bibliometric factors predictive of the citation count a research article will receive. In this article, we go beyond bibliometric data by using a range of machine learning techniques to find patterns predictive of citation count using both article content and avail...
Autores principales: | Beranová, Lucie, Joachimiak, Marcin P., Kliegr, Tomáš, Rabby, Gollam, Sklenák, Vilém |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8993675/ https://www.ncbi.nlm.nih.gov/pubmed/35431364 http://dx.doi.org/10.1007/s11192-022-04314-9 |
Ejemplares similares
-
Multi-class classification of COVID-19 documents using machine learning algorithms
por: Rabby, Gollam, et al.
Publicado: (2022) -
Impact of COVID-19 research: a study on predicting influential scholarly documents using machine learning and a domain-independent knowledge graph
por: Rabby, Gollam, et al.
Publicado: (2023) -
Assessment and Optimization of Explainable Machine Learning Models Applied to Transcriptomic Data
por: Zhao, Yongbing, et al.
Publicado: (2022) -
Excited-State (Anti)Aromaticity
Explains Why Azulene
Disobeys Kasha’s Rule
por: Dunlop, David, et al.
Publicado: (2023) -
Why apply for an intercalated research degree?
por: Agha, Riaz, et al.
Publicado: (2017)