Cargando…
On evaluation metrics for medical applications of artificial intelligence
Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model’s performance. Unfortunately, these...
Autores principales: | Hicks, Steven A., Strümke, Inga, Thambawita, Vajira, Hammou, Malek, Riegler, Michael A., Halvorsen, Pål, Parasa, Sravanthi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8993826/ https://www.ncbi.nlm.nih.gov/pubmed/35395867 http://dx.doi.org/10.1038/s41598-022-09954-8 |
Ejemplares similares
-
Impact of Image Resolution on Deep Learning Performance in Endoscopy Image Classification: An Experimental Study Using a Large Dataset of Endoscopic Images
por: Thambawita, Vajira, et al.
Publicado: (2021) -
SinGAN-Seg: Synthetic training data generation for medical image segmentation
por: Thambawita, Vajira, et al.
Publicado: (2022) -
Usefulness of Heat Map Explanations for Deep-Learning-Based Electrocardiogram Analysis
por: Storås, Andrea M., et al.
Publicado: (2023) -
GridHTM: Grid-Based Hierarchical Temporal Memory for Anomaly Detection in Videos
por: Monakhov, Vladimir, et al.
Publicado: (2023) -
CELLULAR, A Cell Autophagy Imaging Dataset
por: Al Outa, Amani, et al.
Publicado: (2023)