Cargando…
Pseudoprogression prediction in high grade primary CNS tumors by use of radiomics
Our aim is to define the capabilities of radiomics and machine learning in predicting pseudoprogression development from pre-treatment MR images in a patient cohort diagnosed with high grade gliomas. In this retrospective analysis, we analysed 131 patients with high grade gliomas. Segmentation of th...
Autores principales: | Ari, Asena Petek, Akkurt, Burak Han, Musigmann, Manfred, Mammadov, Orkhan, Blömer, David A., Kasap, Dilek N. G., Henssen, Dylan J. H. A., Nacul, Nabila Gala, Sartoretti, Elisabeth, Sartoretti, Thomas, Backhaus, Philipp, Thomas, Christian, Stummer, Walter, Heindel, Walter, Mannil, Manoj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8993885/ https://www.ncbi.nlm.nih.gov/pubmed/35396525 http://dx.doi.org/10.1038/s41598-022-09945-9 |
Ejemplares similares
-
Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
por: Mammadov, Orkhan, et al.
Publicado: (2022) -
Testing the applicability and performance of Auto ML for potential applications in diagnostic neuroradiology
por: Musigmann, Manfred, et al.
Publicado: (2022) -
Assessing preoperative risk of STR in skull meningiomas using MR radiomics and machine learning
por: Musigmann, Manfred, et al.
Publicado: (2022) -
Comparison of MRI Sequences to Predict ATRX Status Using Radiomics-Based Machine Learning
por: Nacul Mora, Nabila Gala, et al.
Publicado: (2023) -
A magnetic resonance imaging based radiomics model to predict mitosis cycles in intracranial meningioma
por: Krähling, Hermann, et al.
Publicado: (2023)