Cargando…
Learning meaningful representations of protein sequences
How we choose to represent our data has a fundamental impact on our ability to subsequently extract information from them. Machine learning promises to automatically determine efficient representations from large unstructured datasets, such as those arising in biology. However, empirical evidence su...
Autores principales: | Detlefsen, Nicki Skafte, Hauberg, Søren, Boomsma, Wouter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8993921/ https://www.ncbi.nlm.nih.gov/pubmed/35395843 http://dx.doi.org/10.1038/s41467-022-29443-w |
Ejemplares similares
-
Rapid protein stability prediction using deep learning representations
por: Blaabjerg, Lasse M, et al.
Publicado: (2023) -
Infants’ conceptual representations of meaningful verbal and nonverbal sounds
por: Sirri, Louah, et al.
Publicado: (2020) -
Exploring perceptions of meaningfulness in visual representations of bivariate relationships
por: Beribisky, Nataly, et al.
Publicado: (2019) -
16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses
por: Woloszynek, Stephen, et al.
Publicado: (2019) -
Low-data interpretable deep learning prediction of antibody viscosity using a biophysically meaningful representation
por: Rai, Brajesh K., et al.
Publicado: (2023)