Cargando…
Graph convolutional networks with hierarchical multi-head attention for aspect-level sentiment classification
Aspect-level sentiment classification has been widely used by researchers as a fine-grained sentiment classification task to predict the sentiment polarity of specific aspect words in a given sentence. Previous studies have shown relatively good experimental results using graph convolutional network...
Autores principales: | Li, Xiaowen, Lu, Ran, Liu, Peiyu, Zhu, Zhenfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994027/ https://www.ncbi.nlm.nih.gov/pubmed/35431451 http://dx.doi.org/10.1007/s11227-022-04480-w |
Ejemplares similares
-
Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
por: Oluwasanmi, Ariyo, et al.
Publicado: (2023) -
BHGAttN: A Feature-Enhanced Hierarchical Graph Attention Network for Sentiment Analysis
por: Zhang, Junjun, et al.
Publicado: (2022) -
Position-Enhanced Multi-Head Self-Attention Based Bidirectional Gated Recurrent Unit for Aspect-Level Sentiment Classification
por: Li, Xianyong, et al.
Publicado: (2022) -
Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network
por: Cao, Ruifen, et al.
Publicado: (2022) -
Dual graph convolutional networks integrating affective knowledge and position information for aspect sentiment triplet extraction
por: Li, Yanbo, et al.
Publicado: (2023)