Cargando…
Deep recurrent Gaussian Nesterovs recommendation using multi-agent in social networks
Due to increasing volume of big data the high volume of information in Social Network put a stop to users from acquiring serviceable information intelligently so many recommendation systems have emerged. Multi-agent Deep Learning gains rapid attraction, and the latest accomplishments address problem...
Autores principales: | Tapaskar, Vinita, Math, Mallikarjun M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994100/ https://www.ncbi.nlm.nih.gov/pubmed/37521128 http://dx.doi.org/10.1007/s12530-022-09435-3 |
Ejemplares similares
-
Optimization of Johnson–Cook Constitutive Model Parameters Using the Nesterov Gradient-Descent Method
por: Zelepugin, Sergey A., et al.
Publicado: (2023) -
Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
por: Lu, Chi-Ken, et al.
Publicado: (2021) -
Counting manatee aggregations using deep neural networks and Anisotropic Gaussian Kernel
por: Wang, Zhiqiang, et al.
Publicado: (2023) -
Multi-view Deep Gaussian Process with a Pre-training Acceleration Technique
por: Zhu, Han, et al.
Publicado: (2020) -
Sequence-based Gaussian network model for protein dynamics
por: Zhang, Hua, et al.
Publicado: (2014)