Cargando…
Machine Learning Models for Predicting Influential Factors of Early Outcomes in Acute Ischemic Stroke: Registry-Based Study
BACKGROUND: Timely and accurate outcome prediction plays a vital role in guiding clinical decisions on acute ischemic stroke. Early condition deterioration and severity after the acute stage are determinants for long-term outcomes. Therefore, predicting early outcomes is crucial in acute stroke mana...
Autores principales: | Su, Po-Yuan, Wei, Yi-Chia, Luo, Hao, Liu, Chi-Hung, Huang, Wen-Yi, Chen, Kuan-Fu, Lin, Ching-Po, Wei, Hung-Yu, Lee, Tsong-Hai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994144/ https://www.ncbi.nlm.nih.gov/pubmed/35072631 http://dx.doi.org/10.2196/32508 |
Ejemplares similares
-
Semantic segmentation guided detector for segmentation, classification, and lesion mapping of acute ischemic stroke in MRI images
por: Wei, Yi-Chia, et al.
Publicado: (2022) -
Colchicine Use and Risks of Stroke Recurrence in Acute Non-Cardiogenic Ischemic Stroke Patients: A Population-Based Cohort Study
por: Liu, Chi-Hung, et al.
Publicado: (2021) -
Stroke Rate Increases Around the Time of Cancer Diagnosis
por: Wei, Yi-Chia, et al.
Publicado: (2019) -
Pioglitazone and PPAR-γ modulating treatment in hypertensive and type 2 diabetic patients after ischemic stroke: a national cohort study
por: Liu, Chi-Hung, et al.
Publicado: (2020) -
Initial blood pressure is associated with stroke severity and is predictive of admission cost and one-year outcome in different stroke subtypes: a SRICHS registry study
por: Liu, Chi-Hung, et al.
Publicado: (2016)